## INTERCONNECTION FACILITIES STUDY REPORT <br> GEN-2018-033

Published November 2023

By SPP Generator Interconnections Dept.

## REVISION HISTORY



## CONTENTS

Revision History ..... i
Summary ..... 1
Introduction ..... 1
Phase(s) of Interconnection Service ..... 1
Compensation for Amounts Advanced for Network Upgrade(s) ..... 1
Interconnection Customer Interconnection Facilities ..... 2
Transmission Owner Interconnection Facilities and Non-Shared Network Upgrade(s) ..... 3
Shared Network Upgrade(s) ..... 4
Contingent Network Upgrade(s) ..... 5
Affected System Upgrade(s) ..... 6
Conclusion ..... 8
Appendices ..... 9
A: Transmission Owner's Interconnection Facilities Study Report and Network Upgrades Report(s)... 10

## SUMMARY

## INTRODUCTION

This Interconnection Facilities Study (IFS) for Interconnection Request GEN-2018-033 is for a 200 MW generating facility located in Cass, NE. The Interconnection Request was studied in the DISIS-2018-001 Impact Study for ER. The Interconnection Customer's requested in-service date is June 1, 2026.

The interconnecting Transmission Owner, Omaha Public Power District (OPPD), performed a detailed IFS at the request of SPP. The full report is included in Appendix A. SPP has determined that full Interconnection Service will be available after the assigned Transmission Owner Interconnection Facilities (TOIF), Non-Shared Network Upgrades, Shared Network Upgrades, Contingent Network Upgrades, and Affected System Upgrades that are required for full interconnection service are completed.

The primary objective of the IFS is to identify necessary Transmission Owner Interconnection Facilities, Network Upgrades, other direct assigned upgrades, cost estimates, and associated upgrade lead times needed to grant the requested Interconnection Service.

## PHASE(S) OF INTERCONNECTION SERVICE

It is not expected that Interconnection Service will occur in phases. However, full Interconnection Service will not be available until all Interconnection Facilities and Network Upgrade(s) can be placed in service.

## COMPENSATION FOR AMOUNTS ADVANCED FOR NETWORK UPGRADE(S)

FERC Order ER20-1687-000 eliminated the use of Attachment Z2 revenue crediting as an option for compensation. The Incremental Long Term Congestion Right (ILTCR) process will be the sole process to compensate upgrade sponsors as of July 1st, 2020.

## INTERCONNECTION CUSTOMER INTERCONNECTION FACILITIES

The Generating Facility is proposed to consist of Sixty-eight (68) 2.9MW Inverters (PE FP3510M integrated skid) for a total generating nameplate capacity of 200 MW .

The Interconnection Customer's Interconnection Facilities to be designed, procured, constructed, installed, maintained, and owned by the Interconnection Customer at its sole expense include:

- 34.5 kV underground cable collection circuits;
- 34.5 kV to 345 kV transformation substation with associated 34.5 kV and 345 kV switchgear;
- One $345 / 34.5 \mathrm{kV} 162 / 216 / 271$ MVA (ONAN/ONAF/ONAF) step-up transformer to be owned and maintained by the Interconnection Customer at the Interconnection Customer's substation;
- An Approximately 0.4 mile overhead kV line to connect the Interconnection Customer's substation to the Point of Interconnection ("POI") at the 345 kV bus at existing Transmission Owner substation ("Cass County 345 kV Substation") that is owned and maintained by Transmission Owner;
- All transmission facilities required to connect the Interconnection Customer's substation to the POI;
- Equipment at the Interconnection Customer's substation necessary to maintain a composite power delivery at continuous rated power output at the high-side of the generator substation at a power factor within the range of 95\% lagging and 95\% leading in accordance with Federal Energy Regulatory Commission (FERC) Order 827. The Interconnection Customer may use inverter manufacturing options for providing reactive power under no/reduced generation conditions. The Interconnection Customer will be required to provide documentation and design specifications demonstrating how the requirements are met; and,
- All necessary relay, protection, control and communication systems required to protect Interconnection Customer's Interconnection Facilities and Generating Facilities and coordinate with Transmission Owner's relay, protection, control and communication systems.


## TRANSMISSION OWNER INTERCONNECTION FACILITIES AND NON-SHARED NETWORK UPGRADE(S)

To facilitate interconnection, the interconnecting Transmission Owner will perform work as shown below necessary for the acceptance of the Interconnection Customer's Interconnection Facilities.

Table 1 and Table 2 list the Interconnection Customer's estimated cost responsibility for Transmission Owner Interconnection Facilities (TOIF) and Non-Shared Network Upgrade(s) and provides an estimated lead time for completion of construction. The estimated lead time begins when the Generator Interconnection Agreement has been fully executed.

Table 1: Transmission Owner Interconnection Facilities (TOIF)

| Transmission Owner Interconnection <br> Facilities (TOIF) | Total Cost <br> Estimate (\$) | Allocated <br> Percent (\%) |
| :--- | :---: | :---: |
| Allocated Cost <br> Estimate (\$) |  |  |
| Transmission Owner's Cass County 345kV <br> Substation Interconnection Expansion GEN- <br> 2018-033 Interconnection (TOIF) (OPPD) | $\$ 2,290,515$ | $100.00 \%$ |
| (UID155898): Facilitate the interconnection of <br> GEN-2018-033 Estimated Lead Time: 24 |  | $\$ 2,290,515$ |
| Months | $\mathbf{\$ 2 , 2 9 0 , 5 1 5}$ |  |
| Total |  | $\mathbf{\$ 2 , 2 9 0 , 5 1 5}$ |

Table 2: Non-Shared Network Upgrade(s)

| Non-Shared Network Upgrades <br> Description | ILTCR | Total Cost <br> Estimate <br> (\$) | Allocated <br> Percent <br> (\%) | Allocated Cost <br> Estimate (\$) |
| :--- | :---: | :---: | :---: | :---: |
| Transmission Owner's Cass County <br> 345kV Substation Interconnection <br> Expansion (DISIS-2018-001) <br> (UID155897): Facilitate the <br> interconnection of GEN-2018-033 | Ineligible | $\$ 3,497,244$ | $100.00 \%$ | $\$ 3,497,244$ |
| Estimated Lead Time: 42 Months |  |  |  |  |
| Total |  | $\$ 3,497,244$ |  | $\$ 3,497,244$ |

## SHARED NETWORK UPGRADE(S)

The Interconnection Customer's share of costs for Shared Network Upgrades is estimated in Table 3 below.

Table 3: Interconnection Customer Shared Network Upgrade(s)

| Shared Network Upgrades <br> Description | ILTCR | Total Cost <br> Estimate (\$) | Allocated <br> Percent (\%) |
| :--- | :---: | :---: | :---: |
| N/A | Allocated <br> Cost Estimate <br> (\$) |  |  |
| Total |  |  |  |

All studies have been conducted assuming that higher-queued Interconnection Request(s) and the associated Network Upgrade(s) will be placed into service. If higher-queued Interconnection Request(s) withdraw from the queue, suspend or terminate service, the Interconnection Customer's share of costs may be revised. Restudies, conducted at the customer's expense, will determine the Interconnection Customer's revised allocation of Shared Network Upgrades.

## CONTINGENT NETWORK UPGRADE(S)

Certain Contingent Network Upgrades are currently not the cost responsibility of the Interconnection Customer but will be required for full Interconnection Service.

Table 4: Interconnection Customer Contingent Network Upgrade(s)

| Contingent Network Upgrade(s) Description | Current Cost <br> Assignment | Estimated In- <br> Service Date |
| :--- | :--- | :--- |
| N/A |  |  |

Depending upon the status of higher- or equally-queued customers, the Interconnection Request's inservice date is at risk of being delayed or Interconnection Service is at risk of being reduced until the inservice date of these Contingent Network Upgrades.

## AFFECTED SYSTEM UPGRADE(S)

To facilitate interconnection, the Affected System Transmission Owner will be required to perform the facilities study work as shown below necessary for the acceptance of the Interconnection Customer's Interconnection Facilities. Table 5 displays the current impact study costs provided by either MISO or AECI as part of the Affected System Impact review. The Affected System facilities study could provide revised costs and will provide each Interconnection Customer's allocation responsibilities for the upgrades.

Table 5: Interconnection Customer Affected System Upgrade(s)
$\left.\begin{array}{|l|c|c|}\hline \text { Affected System Upgrades Description } & \begin{array}{c}\text { Total Cost } \\ \text { Estimate (\$) }\end{array} & \begin{array}{c}\text { Allocated } \\ \text { Percent (\%) }\end{array} \\ \begin{array}{l|l|l|}\text { Allocated Cost } \\ \text { Estimate (\$) }\end{array} \\ \hline \text { AECI's NU01 OPEN BRANCH FROM BUS } & & \\ \hline \text { 300084 [5GRNFRT 161.00] } & & \\ \hline \text { T0 BUS 505440 [DONIPHN5 161.00] CKT 1 }\end{array}\right)$

Southwest Power Pool, Inc.

| AECI's NU06 OPEN LINE FROM BUS 300036 |  |  |  |
| :---: | :---: | :---: | :---: |
| [5ELATHRP 161.00] TO BUS 301310 [5REX 161.00 ] CKT 1 | \$3,264,800 | 16.90\% | \$551,891 |
| AECI's NU07 OPEN BRANCH FROM BUS 300088 [5HUBEN 161.00] TO BUS 300102 [5MRSHFL 161.00] CKT 1 | \$4,418,000 | 11.84\% | \$522,980 |
| Total | \$31,622,800 |  | \$4,116,940 |

## CONCLUSION

After all Interconnection Facilities and Network Upgrades have been placed into service, Interconnection Service for 200 MW can be granted. Full Interconnection Service will be delayed until the TOIF, Non-Shared NU, Shared NU, Contingent NU, Affected System Upgrades that are required for full interconnection service are completed. The Interconnection Customer's estimated cost responsibility for full interconnection service is summarized in the table below.

Table 6: Cost Summary

| Description | Allocated Cost Estimate |
| :--- | ---: |
| Transmission Owner Interconnection Facilities Upgrade(s) | $\$ 2,290,515$ |
| Non-Shared Network Upgrade(s) | $\$ 3,497,244$ |
| Shared Network Upgrade(s) | $\$ 0$ |
| Affected System Upgrade(s) | $\$ 4,116,940$ |
| Total | $\mathbf{9 9 , 9 0 4 , 6 9 9}$ |

Use the following link for Quarterly Updates on upgrades from this report: https://spp.org/spp-documents-filings/?id=18641

A draft Generator Interconnection Agreement will be provided to the Interconnection Customer consistent with the final results of this IFS report. The Transmission Owner and Interconnection Customer will have 60 days to negotiate the terms of the GIA consistent with the SPP Open Access Transmission Tariff (OATT).

Southwest Power Pool, Inc.

## APPENDICES

## A: TRANSMISSION OWNER'S INTERCONNECTION FACILITIES STUDY REPORT AND NETWORK UPGRADES REPORT(S)

See next page for the Transmission Owner's Interconnection Facilities Study Report and Network Upgrades Report(s).

## DISIS-2018-001 Interconnection Facilities Study



Omaha Public Power District
Rev 0 - November 2, 2023

## Executive Summary

This study evaluates the interconnection of new generation sites in the Omaha Public Power District (OPPD) service area. The interconnection was evaluated for the steady state, stability and fault current impacts to the OPPD and adjacent transmission system per North American Electric Reliability Corporation (NERC) Standard FAC-002 "Facility Interconnection Studies".

The generation sites evaluated are:

- GEN-2018-025 is a 200MW battery located near the existing 345 kV substation S 3451 . This request will interconnect directly to the substation.
- GEN-2018-033 is a 200MW battery located near the existing 345 kV substation S3740. This request will interconnect directly to the substation.
- GEN-2018-037 is a 100 MW battery located near the existing 161 kV substation S 1211 . This request will interconnect to a new 161 kV substation on the existing S1211-S1220 and S1211-S1299 161kV circuits.
- GEN-2018-043 is a 500WM solar facility located southeast of the city of Tekamah. This request will interconnect to a new 345 kV substation on the existing Raun-S3451 345kV circuit.

The results of the study indicate that no issues are created by the addition of the new generation.

Note that this study did not evaluate the impact of battery charging load to the OPPD system. Additional studies will be required prior to battery charging load being placed on the OPPD system.

## Contents

Executive Summary ..... 1
SECTION 1: POWER FLOW ..... 3
Contingency Selection ..... 4
N-1 \& Multiple Element Contingency Results ..... 5
SECTION 2: Stability ..... 6
Modeling ..... 6
Contingency Selection ..... 8
Stability Monitoring ..... 8
Scenarios ..... 11
Stability Results ..... 11
SECTION 3: Short Circuit ..... 12
Modeling ..... 12
Short Circuit Simulation ..... 13
Contingency Selection ..... 13
Short Circuit Results ..... 13
SECTION 4: MITIGATIONS ..... 14
SECTION 5: Detailed Cost Estimates and Schedule ..... 15
Appendix 1 - Short Circuit Results ..... 20
Appendix 2 - Stability Events ..... 33

## SECTION 1: POWER FLOW

## Models

Southwest Power Pool (SPP) Integrated Transmission Planning (ITP) 2023 Base Reliability (BR) models. This will include the 1-, 5- and 10-year light, summer peak and winter peak models.

## Base Model Changes

The OPPD North Omaha Station units 1, 2 and 3 are placed into service in the summer and light load models to reflect the OPPD Board of Directors decision to defer their retirement until the end of 2026. As part of this deferment, North Omaha Station units 4 and 5 will not be converted to gas operation. Therefore, their Pmax was modified to reflect coal output.

Prior queued generation and any OPPD transmission system upgrades assigned to those requests will also be included. Prior queued generation will be modeled using the same data used in their associated facility study.

Turtle Creek Station (S1363) will be added, but the generation will not be dispatched because they are lower queued requests.

Standing Bear Lake Station (S1347) will be added, but the generation will not be dispatched because they are lower queued requests.

The following approved system topology changes will also be added to reflect expected inservice dates.

- New 161kV circuit S1363-S1362
- Remove circuit S1361-S1362
- New 161 kV circuit S1281-S1361
- Tap 161kV circuit S1345-S1236 into S1252
- Uprate 161 kV circuits S1209-S1347-S1252
- Uprate 161 kV circuit S1201-S1206
- Uprate 161 kV circuit S1254-S1281
- New S1247 161kV delivery point
- New S1358 161kV delivery point
- New 161kV circuit S1252-S1358
- Uprate 161 kV circuit S1209-S1358
- Uprate 161 kV circuit S1358-S1250
- 10MVAR Capacitor at 69 kV substation S971
- S1201 Load Addition

OPPD generation was then redispatched to cover the above load additions.

## Generation Dispatch

The new generation under study (CQ) and any prior queued (PQ) generation will be dispatched per the table below. This generation will be sunk external to OPPD by simply allowing the excess generation to export to the entire interchange via swing machine reduction. This maximizes loading on the OPPD system to identify potential outlet issues and provided a sensitivity to the SPP DISIS; which reduces existing generation to sink the new generation uniformly.

|  | PQ | CQ | PQ | CQ | PQ | CQ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Combined Cycle | Summer | Winter |  | Light |  |  |
| Combustion Turbine | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Diesel Engine | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Hydro | $50 \%$ | $100 \%$ | $50 \%$ | $100 \%$ | $50 \%$ | $100 \%$ |
| Nuclear | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ |
| Storage | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Coal | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Oil | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Waste Heat | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Wind | $20 \%$ | $100 \%$ | $20 \%$ | $100 \%$ | $60 \%$ | $100 \%$ |
| Solar | $40 \%$ | $100 \%$ | $10 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |

OPPD reserves the right, at its sole discretion, to utilize SPP's DISIS electrically equivalent dispatch methodology when appropriate.

## Study Generation

The modeling data for the new generation will be extracted from the DISIS-2018-001 models.

## Contingency Selection

NERC TPL-001-4 "Transmission System Planning Performance Requirements" Table 1 contingency events that do not allow for the interruption of firm transmission service will be evaluated. This is supported by the fact that any issue introduced by the new generation would also be mitigated by reducing that generation per the TPL-001-4 allowance.

This contingency set also includes contingencies from neighboring utilities.

## Monitoring

The OPPD system and five buses beyond will be monitored for both voltage and thermal impacts.

Thermal monitoring will use Rate 1/A for system intact, and Rate 2/B for post-contingent loading. Any thermal loading greater than $100 \%$ will be identified.

Transfer Distribution Factor (TDF) will be calculated for each generation request. TDFs on facilities that exceed $20 \%$ will be considered significantly impacted facilities. TDFs on facilities that exceed $3 \%$ will be provided for informational only.

$$
T D F=100 \times \frac{M V A \text { flow }(\text { with Project })-M V A \text { flow }(w / o \text { Project })}{\text { Project } M W}
$$

Voltage monitoring will be performed as follows: all voltages for greater than $1.05 \mathrm{pu},>100 \mathrm{kV}$ for less than 0.95pu and <100kV for less than 0.90pu.

Voltage impacts that exceed 0.02pu will be considered significantly impacted facilities.

## N-1 \& Multiple Element Contingency Results

## Steady State

No thermal or voltage issues were identified.

## SECTION 2: Stability

## Modeling

Southwest Power Pool (SPP) Model Development Advisory Group (MDAG) 2021 Dynamic models. This will include the 2-year summer peak and 3-year light and summer peak models.

Base Model Changes
Prior queued generation and any OPPD transmission system upgrades assigned to those requests will also be included. Prior queued generation will be modeled using the same data used in their associated facility study.

Turtle Creek Station (S1363) generation will not be dispatched because they are lower queued requests.

Standing Bear Lake Station (S1347) generation will not be dispatched because they are lower queued requests.

The following approved system topology changes will also be added to reflect expected inservice dates.

- Uprate 161 kV circuit S1201-S1206
- Uprate 161 kV circuit S1254-S1281
- New S1247 161kV delivery point
- New 1358 161kV delivery point
- New 161 kV circuit S1252-S1358
- Uprate 161 kV circuit S1209-S1358
- Uprate 161 kV circuit S1358-S1250
- 10MVAR Capacitor at 69 kV substation S971
- S1201 Load Addition

OPPD generation was then redispatched to cover the above load additions.

## Generation Dispatch

The new generation (CQ) under study and any prior queued (PQ) generation will be dispatched per the table below. This generation will be sunk external to OPPD by simply allowing the excess generation to export to the entire interchange via swing machine reduction. This maximizes loading on the OPPD system to identify potential outlet issues and provided a sensitivity to the SPP DISIS; which reduces existing generation to sink the new generation uniformly.

|  | PQ | CQ | PQ | CQ | PQ | CQ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Combined Cycle | Summer | Winter |  | Light |  |  |
| Combustion Turbine | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Diesel Engine | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Hydro | $50 \%$ | $100 \%$ | $50 \%$ | $100 \%$ | $50 \%$ | $100 \%$ |
| Nuclear | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ |
| Storage | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Coal | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Oil | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Waste Heat | $100 \%$ | $100 \%$ | $100 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |
| Wind | $20 \%$ | $100 \%$ | $20 \%$ | $100 \%$ | $60 \%$ | $100 \%$ |
| Solar | $40 \%$ | $100 \%$ | $10 \%$ | $100 \%$ | $0 \%$ | $100 \%$ |

OPPD reserves the right, at its sole discretion, to utilize SPP's DISIS electrically equivalent dispatch methodology when appropriate.

## Study Generation

The modeling data for the new generation will be extracted from the DISIS-2018-001 models.

## Contingency Selection

The fault disturbances OPPD selected are based on engineering judgment for those disturbances involving facilities in OPPD's system that are expected to produce the most severe system impacts. Previous stability study results are used to aid in the selection of disturbances. Many of the selected disturbances are in close proximity to significant generation plants or generation outlets where such a disturbance could result in loss of synchronism, loss of generation and potentially lead to grid instability. Other reasons why disturbances were selected are the following:

- The disturbance involves the outage of one or more strong transmission sources to the location of a fault.
- The disturbance involves high-speed automatic reclosing or automatic reclosing after a relatively short time delay.
- It is believed that the voltage swings that will result from the disturbance will be larger than those resulting from other disturbances will.
- The disturbance involves a fault at a bus having a load to which a dynamic load model is applied in a manner specific to that load.
- Selection of the disturbance would increase the variety of locations at which disturbances are studied.

See Appendix 2 for a list of events.

## Stability Monitoring

All simulations were performed using Siemens PSSE.
Rotor angle dynamic simulation plots were generated for all monitored generators. Because of the number of buses monitored for voltage violations, dynamic simulation plots were developed for those buses flagged for not meeting disturbance performance criteria as listed below. Simulation plots are available on request and are not included in this report. The following items are monitored and recorded and represent OPPD's criteria for identifying instability conditions as per TPL-001-4 R6:

Rotor angle stability and oscillation damping (conventional generation only) - Rotor angles were monitored for all OPPD area generators (Area 645) and all generators in the following areas:

- 635 MEC
- 640 NPPD
- 650 LES

Those units that exhibited signs of instability were marked for further analysis. Rotor angle deviations were calculated relative to the system swing machine, Brown's Ferry. The curves of rotor angle deviation versus time for machines with rotor angle deviation greater than or equal to 16 degrees (measured as absolute maximum peak to absolute minimum peak) were judged
against the SPPR1 and SPPR5 criteria as described in the SPP Disturbance Performance Requirements. Machines with rotor angle deviations less than 16 degrees that did not exhibit convergence were evaluated on an individual basis. Machines with rotor angle deviations greater than 180 degrees were also flagged. The SPPR1 and SPPR5 criteria is restated below:

- Well damped angular oscillations shall meet one of the following two requirements when calculated directly from the rotor angle:
- Successive Positive Peak Ratio (SPPR1) must be less than or equal to 0.95 or have a Damping Factor \% greater than or equal to 5\%, where SPPR1 and its associated Damping Factor are calculated as follows:

Peak Rotor Angle of 2nd Positive Peak minus Minimum Value


- Successive Positive Peak Ratio Five (SPPR5) must be less than or equal to 0.774 or have a Damping Factor \% greater than or equal to $22.6 \%$, where SPPR5 and its associated Damping Factor are calculated as follows:

Peak Rotor Angle of 6th Positive Peak minus Minimum Value


Peak Rotor Angle of 1st Positive Peak minus Minimum Value Damping Factor $\%=(1-$ SPPR5 $) \times 100 \% \geq 22.6 \%$

Transient voltage stability - Voltage was monitored at all OPPD generator buses, all OPPD buses 69 kV and above, generator buses in the areas monitored for rotor angle as listed above. The voltage responses were judged against the $0.70<\mathrm{Vtransient} \leq 1.20$ p.u. criteria, as described in the SPP Disturbance Performance Requirements and restated below. Those units that violate the transient voltage criteria were marked for further analysis. (TPL-001-4 requirement R5)

- After a disturbance is cleared, bus voltages on the Bulk Electric System shall recover above 0.70 per unit, 2.5 seconds after the fault is cleared. Bus voltages shall not swing above 1.20 per unit after the fault is cleared, unless affected transmission system elements are designed to handle the rise above 1.2 per unit.

Protection System Operation - The analysis simulated the removal of all elements that the Protection System and other automatic controls are expected to disconnect for each contingency without operator intervention. This was accomplished by defining all appropriate actions in PSAS files that were run for each event. The analysis considered the impacts of highspeed reclosing, tripping of generators when bus voltages or high side of the GSU voltages are less than known or assumed generator low voltage ride through capability, and tripping of transmission lines or transformers where transient swings cause Protection System operation.

PSS/E system-wide monitoring models were used as a way to quickly scan for transmission lines or generators that may be impacted by the transient swings caused by a disturbance. PSS/E activity RELSCN was used to place a generic distance relay model at each end of every circuit. The model uses relay characteristics that are based on percentages of line impedance. PSS/E activity OSSCAN was also used and places a generic out-of-step relay at the end of every circuit to monitor for instances where apparent impedance is less than line impedance. Results were reviewed for instances where either RELSCN or OSSCAN flagged transient conditions. These were reviewed to determine whether subsequent tripping was required. If it was determined subsequent tripping was warranted, then this action was defined in the PSAS file for the event and the event was re-run.

Generator Low Voltage Ride Through - To simulate protection system responses to abnormal voltage conditions, OPPD reviewed generator voltage protective relay settings using PRC-024-2, Attachment 2 as a guideline and developed appropriate dynamic relay models for those units with generator voltage protective relaying. Additionally, OPPD post-processed disturbance results to look for any instances where generator bus voltages or GSU high side bus voltages lie in the allowable tripping region (either above or below the 'No Trip Zone' in Attachment 2 of PRC-024-2) per the high and low voltage ride through duration criteria listed in PRC-024-2, Attachment 2. These instances were flagged and examined further to determine if additional actions would occur based on in-service protection systems.

Cascading - Potential cascading due to a disturbance was evaluated for NERC Planning Events (category P1-P7) and Extreme Events to check for the uncontrolled successive loss of system elements. OPPD's evaluation of disturbances that have the potential to cause cascading is meant to identify those situations where unrestrained electric service interruption cannot be prevented from spreading. Simulation results were scanned for instances where units exhibit instability as evidenced by a loss of synchronism or violation of voltage criteria. Simulations are re-run with the unit(s) that exhibited a loss of stability being tripped at an appropriate simulation time. A steady state evaluation is also performed to simulate the outage of elements lost due to the original event and the subsequent tripping events to identify thermal issues that may arise as a result. The stability results are scanned again to look for instances of units that lose synchronism. If any are found, the previous steps are repeated to trip these additional elements. This entire process is repeated until either all units display rotor angle stability, or one of the following cascading criteria are met:

- The disturbance causes more than three iterations of successive instability, tripping, and reviewing following the initial event.
- The accumulated amount of generation lost due to the initial event and subsequent events is greater than 2000 MW. This criterion represents approximately $150 \%$ of OPPD's largest generation site, which is consistent with SPP cascading criteria.

The event is considered to have the potential of causing cascading if one of the above criteria is met. Per requirement R4.5, if an extreme event causes cascading an evaluation of possible actions designed to reduce the likelihood or mitigate the consequences of the event(s) will be conducted.

## Scenarios

Requests will be studied simultaneous unless issues are identified. If issues are identified, then they will be run independently to determine the source of the issue.

## Stability Results

The following instabilities were present:

- Loss of angular stability at Nebraska City Units 1 and 2 for an Extreme Event involving 345kV substation S3458.
- This is an existing base case issue on the OPPD system that is mitigated by the automatic tripping of NC-1 and NC-2. No cascading occurs; therefore, no other mitigation is required.


## SECTION 3: Short Circuit

The intent of the short circuit study is to determine if the interconnection of the new generation causes an increase in available fault current above the ratings of the currently installed circuit breakers on the OPPD Transmission System.

## Modeling

Southwest Power Pool (SPP) Integrated Transmission Planning (ITP) 2023 Short Circuit (BR) models. This will include the 2-and 5-year summer peak max fault models.

Base Model Changes
The OPPD North Omaha Station units 1, 2 and 3 are placed into service in the summer and light load models to reflect the OPPD Board of Directors decision to defer their retirement until the end of 2026. As part of this deferment, North Omaha Station units 4 and 5 will not be converted to gas operation. Therefore, their Pmax was modified to reflect coal output.

Prior queued generation and any OPPD transmission system upgrades assigned to those requests will also be included. Prior queued generation will be modeled using the same data used in their associated facility study.

Turtle Creek Station (S1363) will be added, but the generation will not be dispatched because they are lower queued requests.

Standing Bear Lake Station (S1347) will be added, but the generation will not be dispatched because they are lower queued requests.

The following approved system topology changes will also be added to reflect expected inservice dates.

- New 161kV circuit S1363-S1362
- Remove circuit S1361-S1362
- New 161kV circuit S1281-S1361
- Tap 161 kV circuit S1345-S1236 into S1252
- Uprate 161 kV circuits S1209-S1347-S1252
- Uprate 161 kV circuit S1201-S1206
- Uprate 161 kV circuit S1254-S1281
- New S1247 161kV delivery point
- New 1358 161kV delivery point
- New 161kV circuit S1252-S1358
- Uprate 161kV circuit S1209-S1358
- Uprate 161 kV circuit S1358-S1250
- 10MVAR Capacitor at 69 kV substation S971
- S1201 Load Addition

All generation will be placed in service to maximize fault current values.

## Short Circuit Simulation

Analysis was performed using the Power System Simulation for Engineering (PSS/E) short circuit function ANSI. These results are then compared to breaker rating to determine whether the circuit breakers have interrupting capability for the faults that they will be expected to interrupt.

## Contingency Selection

A contingency analysis will not be performed for the short circuit analysis. The intact system provides the most paths for fault current to flow, thereby resulting in the worst case. Any circuit breaker loaded greater than $100 \%$ will be identified for replacement.

## Short Circuit Results

No circuit breaker fault duties are exceeded. Fault current results are listed in Appendix 1.

## SECTION 4: MITIGATIONS

No issues were identified that require mitigation.


## SECTION 5: Detailed Cost Estimates and Schedule

Detailed cost estimates have been prepared for the interconnection facilities and any identified network upgrades identified. The prepared cost estimates are Study level estimates ( $+20 /-20 \%$ ) and assume the implementation of standard OPPD construction and procurement practices. Figures are also provided below to clarify the interconnection scope and the cost allocation.

| SCERT | Categor | Scope |  | Phase 2 <br> Estimate | IFS <br> Estimate | $\begin{gathered} \text { \% } \\ \text { Change } \end{gathered}$ | Lead <br> Time (months) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 155907 | TOIF | S3451 Dead End Structure, Line Drops and ~1.0 mile 345kV gen tie line |  | \$956,729 | \$4,691,922 |  | 36 |
| 156027 | NU | No scope. This interconnection uses an existing spare bay. |  | \$0 | \$0 |  | 36 |
|  |  |  | Total | \$956,729 | \$4,691,922 | 390\% |  |

The previously estimated scope costs increased by $30 \%$ due to continued increases in material costs. However, the bulk of the overall project cost increase was due to the generator tie line now being included in the project scope and added to the TOIF estimate.


Page 16 of 42

| SCERT | Categor | Scope | Phase 2 <br> Estimate | IFS Estimate |  | Lead <br> Time (months) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 155897 | NU | S3740 Substation Expansion | \$1,882,732 | \$3,497,244 |  | 42 |
| 155898 | TOIF | S3740 Dead End Structure, Line Drops and ~0.25 mile 345kV gen tie line | \$2,949,006 | \$2,290,515 |  | 24 |
|  |  | Total | \$4,831,738 | \$5,787,759 | 20\% |  |

There was a total project cost increase due to continued increases in material costs. The generator tie line is now also included in the TOIF scope but was offset by reductions in other transmission line scope that is no longer required.


| SCERT | ategor | Scope | Estimate |  | \% Change | Lead <br> Time (months) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 156166 | NU | New five terminal 161 kV breaker and a half substation and supporting line work | \$11,578,305 | \$18,110,759 |  | 36 |
| 156167 | TOIF | Dead End Structure and Line Drops for gen tie line | \$2,463,988 | \$150,000 |  | 24 |
|  |  | Total | \$14,042,293 | \$18,260,759 | 30\% |  |

Due to clarifications with how costs are categorized (TOIF vs NU), there was a significant shift in the costs assigned to the individual SCERTS. In addition, the overall cost of the previously estimated scope increased beyond the $+/-20 \%$ allowance due to the steady increase of material costs between estimate phases.


Page 18 of 42

| SCERT | ategor | Scope | Estimate |  | $\begin{gathered} \text { \% } \\ \text { Change } \end{gathered}$ | Lead <br> Time (months) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 156030 | TOIF | Dead End Structure, Line Drops and $\sim 2.0$ mile 345 kV gen tie line | \$3,905,348 | \$4,606,408 |  | 36 |
| 156031 | NU | New three terminal 345kV ring bus substation and supporting line work | \$7,810,696 | \$21,066,242 |  | 48 |
|  |  | Total* | \$11,716,044 | \$25,672,650 | 119\% |  |

*OPPD costs only. This POI is on an OPPD/MidAmerican Energy (MEC) tie line and MEC costs will be documented in a separate Facility Study.

Due to clarifications with how costs are categorized (TOIF vs NU), there was a significant shift in the costs assigned to the individual SCERTS. There was also an increase beyond the $+/-20 \%$ allowance for the following reasons:

1. The existing transmission line does not have communication provisions. Therefore, a new communication path must be established to the new substation. This scope was not accounted for in the previous estimates.
2. The generator tie line is now being included in the scope and is included in the TOIF estimate.


Page 19 of 42

Appendix 1 - Short Circuit Results

| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1250 | CB-11 | 161 | 40.00 | 39.02 | 98\% |
| 1211 | CB 13 | 161 | 45.83 | 43.16 | 94\% |
| 1211 | CB 14 | 161 | 45.83 | 43.16 | 94\% |
| 1211 | CB 16 | 161 | 45.83 | 43.16 | 94\% |
| 1211 | CB 17 | 161 | 45.83 | 43.16 | 94\% |
| 1211 | CB 22 | 161 | 45.83 | 43.16 | 94\% |
| 1211 | CB 23 | 161 | 45.83 | 43.16 | 94\% |
| 1231 | CB 1 | 161 | 45.83 | 42.16 | 92\% |
| 1231 | CB 2 | 161 | 45.83 | 42.16 | 92\% |
| 1231 | CB 4 | 161 | 45.83 | 42.16 | 92\% |
| 1231 | CB 6 | 161 | 45.83 | 42.16 | 92\% |
| 1206 | CB-10 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-11 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-12 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-13 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-14 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-15 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-16 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-17 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-18 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-19 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-7 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-8 | 161 | 63.00 | 55.18 | 88\% |
| 1206 | CB-9 | 161 | 63.00 | 55.18 | 88\% |
| 1221 | 1541 | 161 | 40.00 | 34.59 | 86\% |
| 1211 | CB-15 | 161 | 50.00 | 43.16 | 86\% |
| 1211 | CB-18 | 161 | 50.00 | 43.16 | 86\% |
| 1211 | CB-21 | 161 | 50.00 | 43.16 | 86\% |
| 1211 | CB-24 | 161 | 50.00 | 43.16 | 86\% |
| 1211 | CB-31 | 161 | 50.00 | 43.16 | 86\% |
| 1211 | CB-32 | 161 | 50.00 | 43.16 | 86\% |
| 1211 | CB-33 | 161 | 50.00 | 43.16 | 86\% |
| 1211 | CB-7 | 161 | 50.00 | 43.16 | 86\% |
| 1211 | CB-8 | 161 | 50.00 | 43.16 | 86\% |
| 1211 | CB-9 | 161 | 50.00 | 43.16 | 86\% |
| 1260 | CB-1 | 161 | 40.00 | 34.18 | 85\% |
| 923 | CB-1 | 69 | 23.00 | 19.54 | 85\% |
| 923 | CB-2 | 69 | 23.00 | 19.54 | 85\% |
| 1231 | CB-7 | 161 | 50.00 | 42.16 | 84\% |
| 1231 | CB-8 | 161 | 50.00 | 42.16 | 84\% |
| 1231 | CB-9 | 161 | 50.00 | 42.16 | 84\% |


| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1252 | CB-1 | 161 | 40.00 | 33.49 | 84\% |
| 1250 | CB 3 | 161 | 50.00 | 39.02 | 78\% |
| 1250 | CB 4 | 161 | 50.00 | 39.02 | 78\% |
| 1250 | CB 5 | 161 | 50.00 | 39.02 | 78\% |
| 3455 | CB 1 A Phase | 345 | 40.00 | 31.17 | 78\% |
| 3455 | CB 1 B Phase | 345 | 40.00 | 31.17 | 78\% |
| 3455 | CB 1 C Phase | 345 | 40.00 | 31.17 | 78\% |
| 3455 | CB 10 A Phase | 345 | 40.00 | 31.17 | 78\% |
| 3455 | CB 10 B Phase | 345 | 40.00 | 31.17 | 78\% |
| 3455 | CB 10 C Phase | 345 | 40.00 | 31.17 | 78\% |
| 3455 | CB 11 A Phase | 345 | 40.00 | 31.17 | 78\% |
| 3455 | CB 11 B Phase | 345 | 40.00 | 31.17 | 78\% |
| 3455 | CB 11 C Phase | 345 | 40.00 | 31.17 | 78\% |
| 3455 | CB 12 A Phase | 345 | 40.00 | 31.17 | 78\% |
| 3455 | CB 12 B Phase | 345 | 40.00 | 31.17 | 78\% |
| 3455 | CB 12 C Phase | 345 | 40.00 | 31.17 | 78\% |
| 1281 | CB 1 | 161 | 40.00 | 30.94 | 77\% |
| 1281 | CB 2 | 161 | 40.00 | 30.94 | 77\% |
| 910 | 647 | 69 | 35.59 | 27.34 | 77\% |
| 910 | 613 B | 69 | 35.59 | 27.34 | 77\% |
| 910 | 646 B | 69 | 35.59 | 27.34 | 77\% |
| 901 | Circuit 613 (CB-1) | 69 | 40.00 | 30.34 | 76\% |
| 901 | Circuit 605 (CB-2) | 69 | 40.00 | 30.34 | 76\% |
| 901 | Circuit 601 GT 2 (CB-3) | 69 | 40.00 | 30.34 | 76\% |
| 901 | Circuit 603 (CB-5) | 69 | 40.00 | 30.34 | 76\% |
| 901 | Circuit 615 GT 1 (CB-4) | 69 | 40.00 | 30.34 | 76\% |
| 1255 | CB-21 | 161 | 63.00 | 47.48 | 75\% |
| 1255 | CB-22 | 161 | 63.00 | 47.48 | 75\% |
| 1255 | CB-23 | 161 | 63.00 | 47.48 | 75\% |
| 1255 | CB-25 | 161 | 63.00 | 47.48 | 75\% |
| 1255 | CB-26 | 161 | 63.00 | 47.48 | 75\% |
| 1255 | CB-27 | 161 | 63.00 | 47.48 | 75\% |
| 1255 | CB-28 | 161 | 63.00 | 47.48 | 75\% |
| 1255 | CB-29 | 161 | 63.00 | 47.48 | 75\% |
| 1255 | CB-30 | 161 | 63.00 | 47.48 | 75\% |
| 1255 | CB-32 | 161 | 63.00 | 47.48 | 75\% |
| 1209 | CB-21 | 161 | 63.00 | 47.27 | 75\% |
| 1209 | CB-22 | 161 | 63.00 | 47.27 | 75\% |
| 1209 | CB-23 | 161 | 63.00 | 47.27 | 75\% |
| 1209 | CB-24 | 161 | 63.00 | 47.27 | 75\% |
| 1209 | CB-25 | 161 | 63.00 | 47.27 | 75\% |
| 1209 | CB-26 | 161 | 63.00 | 47.27 | 75\% |
| 1209 | CB-27 | 161 | 63.00 | 47.27 | 75\% |


| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1209 | CB-28 | 161 | 63.00 | 47.27 | 75\% |
| 1209 | CB-30 | 161 | 63.00 | 47.27 | 75\% |
| 1209 | CB-31 | 161 | 63.00 | 47.27 | 75\% |
| 1209 | CB-32 | 161 | 63.00 | 47.27 | 75\% |
| 911 | CB-661 | 69 | 40.00 | 29.70 | 74\% |
| 911 | CB-662 | 69 | 40.00 | 29.70 | 74\% |
| 911 | CB-665 | 69 | 40.00 | 29.70 | 74\% |
| 911 | CB-668 | 69 | 40.00 | 29.70 | 74\% |
| 1298 | CB-1 | 161 | 40.00 | 29.58 | 74\% |
| 1210 | CB-676 | 161 | 40.00 | 29.06 | 73\% |
| 1222 | CB 1 | 161 | 40.00 | 28.75 | 72\% |
| 921 | 640 | 69 | 37.33 | 26.63 | 71\% |
| 921 | 653 | 69 | 37.33 | 26.63 | 71\% |
| 921 | 679 | 69 | 37.33 | 26.63 | 71\% |
| 921 | 680 | 69 | 37.33 | 26.63 | 71\% |
| 1286 | CB-1 | 161 | 40.00 | 28.40 | 71\% |
| 3456 | CB 1 A Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 1 B Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 1 C Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 2 A Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 2 B Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 2 C Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 3 A Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 3 B Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 3 C Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 4 A Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 4 B Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 4 C Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 5 A Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 5 B Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB 5 C Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB6 A Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB6 B Phase | 345 | 50.00 | 35.25 | 71\% |
| 3456 | CB6 C Phase | 345 | 50.00 | 35.25 | 71\% |
| 909 | CB-651 | 69 | 40.00 | 28.16 | 70\% |
| 938 | CB 2 | 69 | 31.50 | 22.17 | 70\% |
| 906 | BT-61 | 69 | 50.00 | 34.72 | 69\% |
| 906 | BT-62 | 69 | 50.00 | 34.72 | 69\% |
| 906 | BT-63 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-621 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-623 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-624 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-625 | 69 | 50.00 | 34.72 | 69\% |


| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 906 | CB-626 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-628 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-629 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-631 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-632 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-634 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-635 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-636 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-637 | 69 | 50.00 | 34.72 | 69\% |
| 906 | CB-658 | 69 | 50.00 | 34.72 | 69\% |
| 3454 | CB 1 A PHASE | 345 | 40.00 | 27.74 | 69\% |
| 3454 | CB 1 B PHASE | 345 | 40.00 | 27.74 | 69\% |
| 3454 | CB 1 C PHASE | 345 | 40.00 | 27.74 | 69\% |
| 3454 | CB 2 A PHASE | 345 | 40.00 | 27.74 | 69\% |
| 3454 | CB 2 B PHASE | 345 | 40.00 | 27.74 | 69\% |
| 3454 | CB 2 C PHASE | 345 | 40.00 | 27.74 | 69\% |
| 3454 | CB 3 A Phase | 345 | 40.00 | 27.74 | 69\% |
| 3454 | CB 3 B Phase | 345 | 40.00 | 27.74 | 69\% |
| 3454 | CB 3 C Phase | 345 | 40.00 | 27.74 | 69\% |
| 3454 | CB 6 A PHASE | 345 | 40.00 | 27.74 | 69\% |
| 3454 | CB6 B PHASE | 345 | 40.00 | 27.74 | 69\% |
| 3454 | CB6CPHASE | 345 | 40.00 | 27.74 | 69\% |
| 1211 | CB 19 | 161 | 63.00 | 43.16 | 69\% |
| 1211 | CB 20 | 161 | 63.00 | 43.16 | 69\% |
| 1201 | CB-4 | 161 | 50.00 | 34.17 | 68\% |
| 1201 | CB-7 | 161 | 50.00 | 34.17 | 68\% |
| 1201 | CB-8 | 161 | 50.00 | 34.17 | 68\% |
| 1217 | CB-11 | 161 | 50.00 | 33.91 | 68\% |
| 1217 | CB-1579 | 161 | 50.00 | 33.91 | 68\% |
| 1217 | CB-1580 | 161 | 50.00 | 33.91 | 68\% |
| 1217 | CB-1619 | 161 | 50.00 | 33.91 | 68\% |
| 1253 | CB-22 | 161 | 40.00 | 26.84 | 67\% |
| 1231 | CB-3 | 161 | 63.00 | 42.16 | 67\% |
| 917 | CB 1 | 69 | 40.00 | 26.76 | 67\% |
| 917 | CB 3 | 69 | 40.00 | 26.76 | 67\% |
| 917 | CB-2 | 69 | 40.00 | 26.76 | 67\% |
| 1251 | CB-104 | 161 | 50.00 | 33.35 | 67\% |
| 1251 | CB-105 | 161 | 50.00 | 33.35 | 67\% |
| 1251 | CB-106 | 161 | 50.00 | 33.35 | 67\% |
| 1251 | CB-107 | 161 | 50.00 | 33.35 | 67\% |
| 1251 | CB-108 | 161 | 50.00 | 33.35 | 67\% |
| 1251 | CB-109 | 161 | 50.00 | 33.35 | 67\% |
| 1251 | CB-110 | 161 | 50.00 | 33.35 | 67\% |


| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1251 | CB-111 | 161 | 50.00 | 33.35 | 67\% |
| 1251 | CB-112 | 161 | 50.00 | 33.35 | 67\% |
| 1229 | CB 1 | 161 | 45.83 | 30.39 | 66\% |
| 3458 | CB 1 A Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 1 B Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 1 C Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 10 A Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 10 B Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 10 C Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 12 A Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 12 B Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 12 C Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 16 A Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 16 B Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 16 C Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 18 A Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 18 B Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 18 C Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 23 A Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 23 B Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 23 C Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 24 A Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 24 B Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 24 C Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 25 A Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 25 B Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB 25 C Phase | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-19 - A PHASE, POLE 1 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-19 - B PHASE, POLE 2 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-19 - C PHASE, POLE 3 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-21-A PHASE, POLE 1 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-21-B PHASE, POLE 2 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-21-C PHASE, POLE 3 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-27- A PHASE, POLE 1 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-27-B PHASE, POLE 2 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-27-C PHASE, POLE 3 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-3 - A PHASE, POLE 1 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-3 - B PHASE, POLE 2 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-3-C PHASE, POLE 3 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-4 - A PHASE, POLE 1 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-4 - B PHASE, POLE 2 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-4 - C PHASE, POLE 3 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-6 - A PHASE, POLE 1 | 345 | 50.00 | 32.97 | 66\% |


| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3458 | CB-6-B PHASE, POLE 2 | 345 | 50.00 | 32.97 | 66\% |
| 3458 | CB-6-C PHASE, POLE 3 | 345 | 50.00 | 32.97 | 66\% |
| 1235 | CB-1 | 161 | 50.00 | 32.94 | 66\% |
| 1235 | CB-2 | 161 | 50.00 | 32.94 | 66\% |
| 1235 | CB-3 | 161 | 50.00 | 32.94 | 66\% |
| 1235 | CB-4 | 161 | 50.00 | 32.94 | 66\% |
| 1234 | CB-1 | 161 | 40.00 | 26.19 | 65\% |
| 1227 | CB-1 | 161 | 50.00 | 32.65 | 65\% |
| 1254 | CB-11 | 161 | 50.00 | 32.04 | 64\% |
| 1254 | CB-12 | 161 | 50.00 | 32.04 | 64\% |
| 1236 | CB 1 | 161 | 40.00 | 25.07 | 63\% |
| 1216 | CB-1 | 161 | 50.00 | 31.18 | 62\% |
| 3455 | CB 2 A Phase | 345 | 50.00 | 31.17 | 62\% |
| 3455 | CB 2 B Phase | 345 | 50.00 | 31.17 | 62\% |
| 3455 | CB 2 C Phase | 345 | 50.00 | 31.17 | 62\% |
| 3455 | CB 3 A Phase | 345 | 50.00 | 31.17 | 62\% |
| 3455 | CB 3 B Phase | 345 | 50.00 | 31.17 | 62\% |
| 3455 | CB 3 C Phase | 345 | 50.00 | 31.17 | 62\% |
| 3455 | CB 5 | 345 | 50.00 | 31.17 | 62\% |
| 3455 | CB6 A Phase | 345 | 50.00 | 31.17 | 62\% |
| 3455 | CB 6 B Phase | 345 | 50.00 | 31.17 | 62\% |
| 3455 | CB 6 C Phase | 345 | 50.00 | 31.17 | 62\% |
| 924 | CB-1 | 69 | 40.00 | 24.89 | 62\% |
| 1250 | CB-1 | 161 | 63.00 | 39.02 | 62\% |
| 1250 | CB-6 | 161 | 63.00 | 39.02 | 62\% |
| 1220 | CB-1 | 161 | 50.00 | 30.84 | 62\% |
| 1299 | CB-1 | 161 | 50.00 | 30.66 | 61\% |
| 1249 | CB 1 | 161 | 40.00 | 23.98 | 60\% |
| 916 | CB 636 | 69 | 40.00 | 23.91 | 60\% |
| 916 | CB 680 | 69 | 40.00 | 23.91 | 60\% |
| 911 | CB-664 | 69 | 50.00 | 29.70 | 59\% |
| 1298 | CB-2 | 161 | 50.00 | 29.58 | 59\% |
| 1298 | CB-3 | 161 | 50.00 | 29.58 | 59\% |
| 1298 | CB-4 | 161 | 50.00 | 29.58 | 59\% |
| 1361 | CB-23 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-24 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-25 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-27 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-28 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-30 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-31 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-32 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-33 | 161 | 63.00 | 37.05 | 59\% |


| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1361 | CB-34 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-35 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-36 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-37 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-38 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-39 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-40 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-41 | 161 | 63.00 | 37.05 | 59\% |
| 1361 | CB-42 | 161 | 63.00 | 37.05 | 59\% |
| 918 | CB-651 | 69 | 40.00 | 23.45 | 59\% |
| 918 | CB-661D | 69 | 40.00 | 23.45 | 59\% |
| 918 | CB-675B | 69 | 40.00 | 23.45 | 59\% |
| 1210 | CB-1 | 161 | 50.00 | 29.06 | 58\% |
| 1210 | CB-2 | 161 | 50.00 | 29.06 | 58\% |
| 912 | CB-1 | 69 | 40.00 | 23.16 | 58\% |
| 912 | CB-2 | 69 | 40.00 | 23.16 | 58\% |
| 912 | CB-3 | 69 | 40.00 | 23.16 | 58\% |
| 919 | CB-1 | 69 | 40.00 | 22.98 | 57\% |
| 919 | CB-2 | 69 | 40.00 | 22.98 | 57\% |
| 919 | CB-3 | 69 | 40.00 | 22.98 | 57\% |
| 1259 | CB-1 | 161 | 63.00 | 35.79 | 57\% |
| 1259 | CB-2 | 161 | 63.00 | 35.79 | 57\% |
| 1259 | CB-3 | 161 | 63.00 | 35.79 | 57\% |
| 1259 | CB-4 | 161 | 63.00 | 35.79 | 57\% |
| 1233 | CB-1 | 161 | 50.00 | 28.40 | 57\% |
| 1244 | CB-1 | 161 | 40.00 | 22.70 | 57\% |
| 909 | CB-648 | 69 | 50.00 | 28.16 | 56\% |
| 909 | CB-649 | 69 | 50.00 | 28.16 | 56\% |
| 909 | CB-652 | 69 | 50.00 | 28.16 | 56\% |
| 909 | CB-653 | 69 | 50.00 | 28.16 | 56\% |
| 1305 | CB-1 | 161 | 50.00 | 28.05 | 56\% |
| 1305 | CB-2 | 161 | 50.00 | 28.05 | 56\% |
| 930 | CB 1 | 69 | 40.00 | 22.24 | 56\% |
| 930 | CB 2 | 69 | 40.00 | 22.24 | 56\% |
| 938 | CB-1 | 69 | 40.00 | 22.17 | 55\% |
| 908 | CB-1 | 69 | 35.59 | 19.63 | 55\% |
| 908 | CB-2 | 69 | 35.59 | 19.63 | 55\% |
| 1221 | CB-1550 | 161 | 63.00 | 34.59 | 55\% |
| 3451 | CB 1 A PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 1 B PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 1 C PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 10 A PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 10 B PHASE | 345 | 40.00 | 21.90 | 55\% |


| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3451 | CB 10 C PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 11 A PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 11 B PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 11 C PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 12 A PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 12 B PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 12 C PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 2 A PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 2 B PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 2 C PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 3 A PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 3 B PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 3 C PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 4 A PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 4 B PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 4 C PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 5 A PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 5 B PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 5 C PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 6 A PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 6 B PHASE | 345 | 40.00 | 21.90 | 55\% |
| 3451 | CB 6 C PHASE | 345 | 40.00 | 21.90 | 55\% |
| 1341 | CB-1 | 161 | 50.00 | 27.28 | 55\% |
| 1260 | CB-10 | 161 | 63.00 | 34.18 | 54\% |
| 1260 | CB-11 | 161 | 63.00 | 34.18 | 54\% |
| 1260 | CB-12 | 161 | 63.00 | 34.18 | 54\% |
| 1260 | CB-13 | 161 | 63.00 | 34.18 | 54\% |
| 1260 | CB-2 | 161 | 63.00 | 34.18 | 54\% |
| 1260 | CB-3 | 161 | 63.00 | 34.18 | 54\% |
| 1260 | CB-4 | 161 | 63.00 | 34.18 | 54\% |
| 1260 | CB-5 | 161 | 63.00 | 34.18 | 54\% |
| 1260 | CB-6 | 161 | 63.00 | 34.18 | 54\% |
| 1260 | CB-7 | 161 | 63.00 | 34.18 | 54\% |
| 1260 | CB-8 | 161 | 63.00 | 34.18 | 54\% |
| 1260 | CB-9 | 161 | 63.00 | 34.18 | 54\% |
| 1201 | CB-1 | 161 | 63.00 | 34.17 | 54\% |
| 1201 | CB-2 | 161 | 63.00 | 34.17 | 54\% |
| 1201 | CB-3 | 161 | 63.00 | 34.17 | 54\% |
| 1201 | CB-5 | 161 | 63.00 | 34.17 | 54\% |
| 1201 | CB-6 | 161 | 63.00 | 34.17 | 54\% |
| 1201 | CB-9 | 161 | 63.00 | 34.17 | 54\% |
| 1367 | CB-1 | 161 | 40.00 | 21.62 | 54\% |
| 1253 | CB-21 | 161 | 50.00 | 26.84 | 54\% |


| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1253 | CB-23 | 161 | 50.00 | 26.84 | 54\% |
| 1232 | CB-1 | 161 | 50.00 | 26.72 | 53\% |
| 1278 | CB-1 | 161 | 50.00 | 26.66 | 53\% |
| 6866 | CB-11 | 69 | 40.00 | 21.16 | 53\% |
| 6866 | CB-12 | 69 | 40.00 | 21.16 | 53\% |
| 1234 | CB-2 | 161 | 50.00 | 26.19 | 52\% |
| 940 | 680 | 69 | 40.00 | 20.85 | 52\% |
| 940 | 680-B | 69 | 40.00 | 20.85 | 52\% |
| 907 | CB-1 | 69 | 40.00 | 20.66 | 52\% |
| 939 | CB-1 | 69 | 40.00 | 20.45 | 51\% |
| 939 | CB-2 | 69 | 40.00 | 20.45 | 51\% |
| 1254 | CB-13 | 161 | 63.00 | 32.04 | 51\% |
| 1254 | CB-14 | 161 | 63.00 | 32.04 | 51\% |
| 1254 | CB-15 | 161 | 63.00 | 32.04 | 51\% |
| 3459 | CB 1 A Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 1 B Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 1 C Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 2 A Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 2 B Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 2 C Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 3 A Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 3 B Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 3 C Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 4 A Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 4 B Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 4 C Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 5 A Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 5 B Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 5 C Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB6 A Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB 6 B Phase | 345 | 50.00 | 25.39 | 51\% |
| 3459 | CB6 C Phase | 345 | 50.00 | 25.39 | 51\% |
| 1226 | CB 1 | 161 | 50.00 | 25.10 | 50\% |
| 1226 | CB 3 | 161 | 50.00 | 25.10 | 50\% |
| 1226 | CB 4 | 161 | 50.00 | 25.10 | 50\% |
| 1226 | CB 5 | 161 | 50.00 | 25.10 | 50\% |
| 1226 | CB 6 | 161 | 50.00 | 25.10 | 50\% |
| 1226 | CB 7 | 161 | 50.00 | 25.10 | 50\% |
| 1226 | CB 8 | 161 | 50.00 | 25.10 | 50\% |
| 1226 | CB 9 | 161 | 50.00 | 25.10 | 50\% |
| 3455 | CB-7 A Phase | 345 | 63.00 | 31.17 | 49\% |
| 3455 | CB-7 B Phase | 345 | 63.00 | 31.17 | 49\% |
| 3455 | CB-7 C Phase | 345 | 63.00 | 31.17 | 49\% |


| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3455 | CB-9 A Phase | 345 | 63.00 | 31.17 | 49\% |
| 3455 | CB-9 B Phase | 345 | 63.00 | 31.17 | 49\% |
| 3455 | CB-9 C Phase | 345 | 63.00 | 31.17 | 49\% |
| 1281 | CB 3 | 161 | 63.00 | 30.94 | 49\% |
| 1281 | CB 4 | 161 | 63.00 | 30.94 | 49\% |
| 923 | CB 3 | 69 | 40.00 | 19.54 | 49\% |
| 3740 | CB 2 A Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 2 B Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 2 C Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 3 A Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 3 B Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 3 C Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 4 A Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 4 B Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 4 C Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 5 A Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 5 B Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 5 C Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB6 A Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB6 B Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB6 C Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 7 A Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 7 B Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 7 C Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 8 A Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 8 B Phase | 345 | 50.00 | 23.91 | 48\% |
| 3740 | CB 8 C Phase | 345 | 50.00 | 23.91 | 48\% |
| 1250 | CB 2 | 69 | 50.00 | 23.89 | 48\% |
| 1345 | CB-1 | 161 | 50.00 | 23.66 | 47\% |
| 1362 | CB-21 | 161 | 63.00 | 29.71 | 47\% |
| 1362 | CB-22 | 161 | 63.00 | 29.71 | 47\% |
| 1362 | CB-23 | 161 | 63.00 | 29.71 | 47\% |
| 1362 | CB-24 | 161 | 63.00 | 29.71 | 47\% |
| 1362 | CB-25 | 161 | 63.00 | 29.71 | 47\% |
| 1362 | CB-26 | 161 | 63.00 | 29.71 | 47\% |
| 1362 | CB-27 | 161 | 63.00 | 29.71 | 47\% |
| 1362 | CB-28 | 161 | 63.00 | 29.71 | 47\% |
| 1362 | CB-29 | 161 | 63.00 | 29.71 | 47\% |
| 1362 | CB-30 | 161 | 63.00 | 29.71 | 47\% |
| 1362 | CB-31 | 161 | 63.00 | 29.71 | 47\% |
| 1362 | CB-32 | 161 | 63.00 | 29.71 | 47\% |
| 1244 | CB-2 | 161 | 50.00 | 22.70 | 45\% |
| 913 | CB-1 | 69 | 40.00 | 17.83 | 45\% |


| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 913 | CB-2 | 69 | 40.00 | 17.83 | 45\% |
| 1237 | CB-1 | 161 | 50.00 | 22.24 | 44\% |
| 1237 | CB-2 | 161 | 50.00 | 22.24 | 44\% |
| 1237 | CB-3 | 161 | 50.00 | 22.24 | 44\% |
| 1256 | CB-1 | 161 | 50.00 | 22.06 | 44\% |
| 928 | CB-1 | 69 | 40.00 | 17.57 | 44\% |
| 1253 | CB-25 | 161 | 63.00 | 26.84 | 43\% |
| 1366 | CB-1 | 161 | 40.00 | 16.70 | 42\% |
| 1366 | CB-2 | 161 | 40.00 | 16.70 | 42\% |
| 942 | CB-1 | 69 | 40.00 | 16.45 | 41\% |
| 942 | CB-2 | 69 | 40.00 | 16.45 | 41\% |
| 902 | CB 1 | 69 | 23.00 | 9.24 | 40\% |
| 902 | CB 2 | 69 | 23.00 | 9.24 | 40\% |
| 902 | CB 3 | 69 | 23.00 | 9.24 | 40\% |
| 1226 | CB-2 | 161 | 63.00 | 25.10 | 40\% |
| 975 | CB-23 | 69 | 23.00 | 8.79 | 38\% |
| 985 | CB 2 | 69 | 23.00 | 8.57 | 37\% |
| 985 | CB1 | 69 | 23.00 | 8.57 | 37\% |
| 900 | CB 1 | 69 | 23.00 | 8.37 | 36\% |
| 900 | CB 2 | 69 | 23.00 | 8.37 | 36\% |
| 900 | CB 3 | 69 | 23.00 | 8.37 | 36\% |
| 900 | CB 5 | 69 | 23.00 | 8.37 | 36\% |
| 900 | CB 6 | 69 | 23.00 | 8.37 | 36\% |
| 3761 | CB-2 A Phase | 345 | 63.00 | 22.33 | 35\% |
| 3761 | CB-2 B Phase | 345 | 63.00 | 22.33 | 35\% |
| 3761 | CB-2 C Phase | 345 | 63.00 | 22.33 | 35\% |
| 1287 | CB-1 | 161 | 63.00 | 20.43 | 32\% |
| 991 | CB-1 | 69 | 40.00 | 12.77 | 32\% |
| 991 | CB-2 | 69 | 40.00 | 12.77 | 32\% |
| 6815 | CB-1 | T2 869.000 | 40.00 | 12.73 | 32\% |
| 6815 | CB-2 | T2 869.000 | 40.00 | 12.73 | 32\% |
| 1214 | CB-14 | 161 | 40.00 | 12.33 | 31\% |
| 1214 | CB-2 | 161 | 40.00 | 12.33 | 31\% |
| 1214 | CB-3 | 161 | 40.00 | 12.33 | 31\% |
| 1214 | CB-1 | 69 | 40.00 | 12.12 | 30\% |
| 1214 | CB-11 | 69 | 40.00 | 12.12 | 30\% |
| 1214 | CB-12 | 69 | 40.00 | 12.12 | 30\% |
| 1214 | CB-13 | 69 | 40.00 | 12.12 | 30\% |
| 963 | 683 | 69 | 40.00 | 11.97 | 30\% |
| 963 | 684 | 69 | 40.00 | 11.97 | 30\% |
| 963 | 689 | 69 | 40.00 | 11.97 | 30\% |
| 963 | 690 | 69 | 40.00 | 11.97 | 30\% |
| 6874 | CB-1 | 69 | 29.85 | 8.50 | 28\% |


| Sub | Breaker | Base kV | Final Interrupt Rating (kA) | Final Fault Current (kA) | Duty |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6874 | CB-2 | 69 | 29.85 | 8.50 | 28\% |
| 976 | CB-1 | 69 | 50.00 | 12.76 | 26\% |
| 904 | CB-1 | 69 | 40.00 | 9.10 | 23\% |
| 975 | CB-21 | 69 | 40.00 | 8.79 | 22\% |
| 975 | CB-22 | 69 | 40.00 | 8.79 | 22\% |
| 975 | CB-24 | 69 | 40.00 | 8.79 | 22\% |
| 1263 | CB-1 | 161 | 40.00 | 8.66 | 22\% |
| 1263 | CB-11 | 161 | 40.00 | 8.66 | 22\% |
| 1263 | CB-12 | 161 | 40.00 | 8.66 | 22\% |
| 1263 | CB-2 | 161 | 40.00 | 8.66 | 22\% |
| 1263 | CB-3 | 161 | 40.00 | 8.66 | 22\% |
| 1280 | CB-1 | 161 | 50.00 | 10.81 | 22\% |
| 1280 | CB-2 | 161 | 50.00 | 10.81 | 22\% |
| 1280 | CB-3 | 161 | 50.00 | 10.81 | 22\% |
| 960 | CB-20 | 69 | 40.00 | 8.33 | 21\% |
| 984 | CB-1 | 69 | 40.00 | 8.12 | 20\% |
| 914 | CB-1 | 69 | 40.00 | 7.87 | 20\% |
| 962 | 682 | 69 | 31.50 | 5.88 | 19\% |
| 962 | 694 | 69 | 31.50 | 5.88 | 19\% |
| 962 | 697 | 69 | 31.50 | 5.88 | 19\% |
| 6846 | CB-1 | 69 | 40.00 | 7.46 | 19\% |
| 983 | CB-1 | 69 | 40.00 | 7.30 | 18\% |
| 1291 | CB-21 | 161 | 40.00 | 7.18 | 18\% |
| $\begin{aligned} & \text { NCU } \\ & 903 \end{aligned}$ | CB 683 | 69 | 40.00 | 6.40 | 16\% |
| $\begin{aligned} & \text { NCU } \\ & 903 \end{aligned}$ | CB 697 | 69 | 40.00 | 6.40 | 16\% |
| 974 | CB-602 | 69 | 40.00 | 5.74 | 14\% |
| 974 | CB-604 | 69 | 40.00 | 5.74 | 14\% |
| 1399 | CB-1 | 161 | 50.00 | 7.10 | 14\% |
| 1399 | CB-2 | 161 | 50.00 | 7.10 | 14\% |
| 1399 | CB-3 | 161 | 50.00 | 7.10 | 14\% |
| 961 | CB-1 | 69 | 40.00 | 5.16 | 13\% |
| 1258 | CB-41 | 161 | 50.00 | 6.13 | 12\% |
| 1258 | CB-42 | 161 | 50.00 | 6.13 | 12\% |
| 1258 | CB-44 | 161 | 50.00 | 6.13 | 12\% |
| 1258 | CB-45 | 161 | 50.00 | 6.13 | 12\% |
| 1258 | CB-46 | 161 | 50.00 | 6.13 | 12\% |
| 1258 | CB-48 | 161 | 50.00 | 6.13 | 12\% |
| 1258 | CB-49 | 161 | 50.00 | 6.13 | 12\% |
| 971 | 687 | 69 | 40.00 | 4.88 | 12\% |
| 971 | 693 | 69 | 40.00 | 4.88 | 12\% |
| 971 | 694 | 69 | 40.00 | 4.88 | 12\% |


|  |  |  | Final Interrupt | Final Fault |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Sub | Breaker | Base kV | Rating (kA) | Current (kA) | Duty |
| 968 | CB-1 | 69 | 40.00 | 4.57 | $11 \%$ |
| 968 | CB-2 | 69 | 40.00 | 4.57 | $11 \%$ |
| 970 | CB-1 | 69 | 40.00 | 4.41 | $11 \%$ |
| 982 | $C B-1$ | 69 | 40.00 | 4.05 | $10 \%$ |
| 972 | $C B-1$ | 69 | 50.00 | 4.49 | $9 \%$ |

Appendix 2 - Stability Events

| Category | Fault Type | Bus Name | Voltage (kV) | $\begin{array}{r} \text { Bus } \\ \text { Number } \end{array}$ | R | X | Units | Run For Cycles/ Set Scale (MW, Max, Min) | Action | Element | From Bus | To Bus | Tertiary Bus | Circuit ID | Clear Fault |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P1_2 | 3PH | S3458 3 | 345.00 | 645458 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 640139 |  | 1 | Yes |
| P1_2 | 3PH | S3740 3 | 345.00 | 645740 |  |  |  | 5 | Open | Transmission Circuit | 645455 | 645740 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S3455 3 | 345.00 | 645455 | 932 | $10192$ | MVA | 7.5 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S1206 5 | 161.00 | 646206 |  |  |  | 9 | Open | Transmission Circuit | 646206 | 646232 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646232 |  |  | 00 |  |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S1232 5 | 161.00 | 646232 | 1434 | -9156 | MVA | 11.5 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 762712 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | $\begin{aligned} & \text { G18-037- } \\ & \text { TAP } \\ & \hline \end{aligned}$ | 161.00 | 762712 | 2872 | $18493$ | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 762712 |  | 2 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | $\begin{aligned} & \text { G18-037- } \\ & \text { TAP } \end{aligned}$ | 161.00 | 762712 | 2872 | $18493$ | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 646250 |  | 2 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646211 |  |  | 00 |  |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S1250 5 | 161.00 | 646250 | 1454 | -9334 | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P1_3 | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 7.5 | Open | Three Winding | 645451 | 646251 | 648251 | 1 | Yes |
| P2_2 | SCMU L- <br> G | S1217 5 | 161.00 | 646217 |  |  |  | 8.5 | Open | Trip Bus | 646217 |  |  |  | Yes |
| P3_2 |  |  |  |  |  |  |  |  | $\begin{array}{\|c} \hline \text { Prior } \\ \text { Outage } \\ \hline \end{array}$ | Generator | 635024 |  |  | 4 |  |
|  | 3PH | S3458 3 | 345.00 | 645458 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 645456 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S3456 3 | 345.00 | 645456 | 411 | -4361 | MVA | 7.5 |  |  |  |  |  |  | Yes |
| P3_2 |  |  |  |  |  |  |  |  | Prior | Generator | 635024 |  |  | 4 |  |
|  | 3PH | S3456 3 | 345.00 | 645456 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 645456 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | 3PH | S3456 3 | 345.00 | 645456 |  |  |  | 4.5 |  |  |  |  |  |  | Yes |
| P3_2 |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { Prior } \\ \text { Outage } \\ \hline \end{array}$ | Generator | 635024 |  |  | 4 |  |
|  | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645451 | 645459 |  | 1 |  |
|  | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 4.5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |
|  | SLG | S3459 3 | 345.00 | 645459 | 994 | 11394 | MVA | 3 |  |  |  |  |  |  | Yes |
| P3_2 |  |  |  |  |  |  |  |  | $\begin{array}{\|c} \hline \text { Prior } \\ \text { Outage } \\ \hline \end{array}$ | Generator | 635024 |  |  | 4 |  |
|  | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |



| Category | Fault Type | Bus Name | Voltage (kV) | Number | R | X | Units | Run For Cycles/ Set Scale (MW, Max, Min) | Action | Element | $\begin{array}{r} \text { From } \\ \text { Bus } \end{array}$ | To Bus | Tertiary Bus | Circuit ID | Clear Fault |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645458 | 640139 |  | 1 |  |
|  | 3PH | S3740 3 | 345.00 | 645740 |  |  |  | 5 | Open | Transmission Circuit | 645455 | 645740 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S3455 3 | 345.00 | 645455 | 932 | $10192$ | MVA | 7.5 |  |  |  |  |  |  | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646211 | 762712 |  | 1 |  |
|  | 3PH | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 762712 |  | 2 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | $\begin{aligned} & \text { G18-037- } \\ & \text { TAP } \end{aligned}$ | 161.00 | 762712 | 2872 | $18493$ | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645454 | 645451 |  | 1 |  |
|  | 3PH | S3454 3 | 345.00 | 645454 |  |  |  | 5 | Open | Transmission Circuit | 645454 | 645455 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645454 | 645455 |  | 1 |  |
|  | 3PH | S3454 3 | 345.00 | 645454 |  |  |  | 4.5 | Open | Transmission Circuit | 645454 | 645455 |  | 1 | Yes |
|  | SLG | S3455 3 | 345.00 | 645455 | 2782 | $31399$ | MVA | 3 |  |  |  |  |  |  | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645454 | 645451 |  | 1 |  |
|  | 3PH | S3454 3 | 345.00 | 645454 |  |  |  | 5 | Open | Transmission Circuit | 645454 | 645455 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645454 | 645455 |  | 1 |  |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645454 | 645455 |  | 1 |  |
|  | 3PH | S3455 3 | 345.00 | 645455 |  |  |  | 5 | Open | Transmission Circuit | 645455 | 645456 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645455 | 645456 |  | 1 |  |
|  | 3PH | S3455 3 | 345.00 | 645455 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645456 |  | 1 | Yes |
|  | SLG | S3456 3 | 345.00 | 645456 | 2687 | 32674 | MVA | 3 |  |  |  |  |  |  | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645454 | 645455 |  | 1 |  |
|  | 3PH | S3455 3 | 345.00 | 645455 |  |  |  | 5 | Open | Transmission Circuit | 645455 | 645456 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645455 | 645456 |  | 1 |  |
| P6_1_1 |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { Prior } \\ \text { Outage } \end{array}$ | Transmission Circuit | 640139 | 300039 |  | 1 |  |
|  | 3PH | COOPER 3 | 345.00 | 640139 |  |  |  | 4.5 | Open | Transmission Circuit | 640139 | 541199 |  | 1 | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645458 | 650189 |  | 1 |  |
|  | 3PH | S3458 3 | 345.00 | 645458 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 645456 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S3456 3 | 345.00 | 645456 | 411 | -4361 | MVA | 7.5 |  |  |  |  |  |  | Yes |
| P6_1_2 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645451 | 645551 |  | Z1 |  |
|  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { Prior } \\ \text { Outage } \\ \hline \end{gathered}$ | Transmission Circuit | 645551 | 762779 |  | 1 |  |
|  | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 7.5 | Open | Three Winding | 645451 | 646251 | 648251 | 1 | Yes |


| Category | Fault Type | Bus Name | Voltage (kV) | Number | R | X | Units | Run For Cycles/ Set Scale (MW, Max, Min) | Action | Element | $\begin{array}{r} \text { From } \\ \text { Bus } \end{array}$ | To Bus | Tertiary Bus | Circuit ID | Clear <br> Fault |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P6_2_1 |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { Prior } \\ \text { Outage } \\ \hline \end{array}$ | Three Winding | 645456 | 646206 | 648256 | 1 |  |
|  | 3PH | S1206 5 | 161.00 | 646206 |  |  |  | 9 | Open | Transmission Circuit | 646206 | 646201 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646206 |  |  | 00 |  |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S1201 5 | 161.00 | 646201 | 589 | -4038 | MVA | 11.5 |  |  |  |  |  |  | Yes |
| P7_1 | SCMU L-L-G | S3451 3 | 345.00 | 645451 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Transmission Circuit | 645451 | 645454 |  | 1 |  |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645451 | 645459 |  | 1 |  |
|  |  |  |  |  |  |  |  | 0 | Close | Transmission Circuit | 645451 | 645454 |  | 1 |  |
|  | $\begin{array}{r} \hline \text { SCMU L- } \\ \text { L-G } \end{array}$ | S3451 3 | 345.00 | 645451 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Transmission Circuit | 645451 | 645454 |  | 1 |  |
| P7_1 | $\begin{array}{r} \hline \text { SCMU L- } \\ \text { L-G } \end{array}$ | S3451 3 | 345.00 | 645451 |  |  |  | 5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Transmission Circuit | 645451 | 645454 |  | 1 |  |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645451 | 645459 |  | 1 |  |
|  |  |  |  |  |  |  |  | 0 | Close | Transmission Circuit | 645451 | 645454 |  | 1 |  |
| P7_1 | $\begin{array}{r} \hline \text { SCMU L- } \\ \text { L-G } \end{array}$ | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 762712 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Transmission Circuit | 646211 | 762712 |  | 2 |  |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | $\begin{aligned} & \text { G18-037- } \\ & \text { TAP } \end{aligned}$ | 161.00 | 762712 | 2872 | $18493$ | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P7_1 | SCMU L- L-G | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 646250 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Transmission Circuit | 646211 | 646250 |  | 2 |  |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646211 |  |  | 00 |  |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646250 |  |  | 00 |  |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | $\begin{array}{r} \text { SCMU L- } \\ \text { L-G } \end{array}$ | S1250 5 | 161.00 | 646250 |  |  |  | 8.5 |  |  |  |  |  |  | Yes |
| Extreme_2_b | 3PH | S3458 3 | 345.00 | 645458 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 640139 |  | 1 | Yes |
|  | 3 PH | S3458 3 | 345.00 | 645458 |  |  |  | 8.5 |  |  |  |  |  |  | Yes |
| Extreme_2_c | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 7.5 | Open | Three Winding | 645451 | 646251 | 648251 | 1 | Yes |
|  | 3PH | S3451 3 | 345.00 | 645451 |  |  |  | 9.5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |
| Extreme_2_f |  |  |  |  |  |  |  |  | $\begin{array}{\|c} \hline \text { Prior } \\ \text { Outage } \end{array}$ | Transmission Circuit | 645451 | 645551 |  | Z1 |  |
|  |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645551 | 762779 |  | 1 |  |
|  | SCMU L- <br> G | S3451 3 | 345.00 | 645451 |  |  |  | 7.5 | Open | Three Winding | 645451 | 646251 | 648251 | 1 | Yes |
|  | $\begin{array}{r} \text { SCMU L- } \\ \mathrm{G} \\ \hline \end{array}$ | S3451 3 | 345.00 | 645451 |  |  |  | 9.5 | Open | Transmission Circuit | 645451 | 645459 |  | 1 | Yes |
| Extreme_2_f |  |  |  |  |  |  |  |  | $\begin{array}{r} \hline \text { Prior } \\ \text { Outage } \\ \hline \end{array}$ | Transmission Circuit | 645455 | 645740 |  | 1 |  |


| Category | Fault Type | Bus Name | Voltage (kV) | Number | R | X | Units | Run For Cycles/ Set Scale (MW, Max, Min) | Action | Element | $\begin{array}{r} \text { From } \\ \text { Bus } \end{array}$ | To Bus | Tertiary Bus | Circuit ID | Clear <br> Fault |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SCMU L- <br> G | S3458 3 | 345.00 | 645458 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 640139 |  | 1 | Yes |
|  | SCMU L- <br> G | S3458 3 | 345.00 | 645458 |  |  |  | 8.5 |  |  |  |  |  |  | Yes |
| Extreme_2_f |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645458 | 640139 |  | 1 |  |
|  | SCMU L- <br> G | S3740 3 | 345.00 | 645740 |  |  |  | 5 | Open | Transmission Circuit | 645455 | 645740 |  | 1 | Yes |
|  | $\begin{array}{r} \text { SCMU L- } \\ \mathrm{G} \\ \hline \end{array}$ | S3740 3 | 345.00 | 645740 |  |  |  | 8.5 |  |  |  |  |  |  | Yes |
| Extreme_2_f |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646201 | 646206 |  | 1 |  |
|  | SCMU L- <br> G | S1206 5 | 161.00 | 646206 |  |  |  | 9 | Open | Transmission Circuit | 646206 | 646232 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646232 |  |  | 00 |  |
|  | SCMU L- $\qquad$ | S1206 5 | 161.00 | 646206 |  |  |  | 8 | Open | Three Winding | 646206 | 647906 | 648206 | 1 | Yes |
| Extreme_2_f |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645454 | 645455 |  | 1 |  |
|  | SCMU L- <br> G | S3455 3 | 345.00 | 645455 |  |  |  | 5 | Open | Transmission Circuit | 645455 | 645456 |  | 1 | Yes |
|  | SCMU L- $\mathrm{G}$ | S3455 3 | 345.00 | 645455 |  |  |  | 9.5 | Open | Three Winding | 645455 | 646255 | 648255 | 1 | Yes |
| Extreme_2_f |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645458 | 640139 |  | 1 |  |
|  | SCMU L- <br> G | S3458 3 | 345.00 | 645458 |  |  |  | 5 | Open | Transmission Circuit | 645458 | 645456 |  | 1 | Yes |
|  | SCMU L- G | S3458 3 | 345.00 | 645458 |  |  |  | 8.5 |  |  |  |  |  |  | Yes |
| Extreme_2_f |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645458 | 640139 |  | 1 |  |
|  | SCMU L- <br> G | S3458 3 | 345.00 | 645458 |  |  |  | 4.5 | Open | Transmission Circuit | 645458 | 650189 |  | 1 | Yes |
|  | SCMU L- <br> G | S3458 3 | 345.00 | 645458 |  |  |  | 9 |  |  |  |  |  |  | Yes |
| Extreme_2_f |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 640139 | 300039 |  | 1 |  |
|  | SCMU L- <br> G | COOPER 3 | 345.00 | 640139 |  |  |  | 4.5 | Open | Transmission Circuit | 640139 | 541199 |  | 1 | Yes |
|  | $\begin{array}{r} \text { SCMU L- } \\ \mathrm{G} \end{array}$ | COOPER 3 | 345.00 | 640139 |  |  |  | 9 | Open | Transmission Circuit | 640139 | 635017 |  | 1 | Yes |
| P1_2 | 3PH | S3456 3 | 345.00 | 645456 |  |  |  | 5 | Open | Transmission Circuit | 645456 | 635000 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | 3PH | S3456 3 | 345.00 | 645456 |  |  |  | 4.5 |  |  |  |  |  |  | Yes |
| P4_2 | SCMU L- <br> G | S3456 3 | 345.00 | 645456 |  |  |  | 5 | Open | Transmission Circuit | 645456 | 635000 |  | 1 | Yes |
|  | $\begin{array}{r} \text { SCMU L- } \\ \mathrm{G} \\ \hline \end{array}$ | S3456 3 | 345.00 | 645456 |  |  |  | 9 | Open | Transmission Circuit | 645456 | 645455 |  | 1 | Yes |


| Category | Fault Type | Bus Name | Voltage (kV) | $\begin{array}{r} \text { Bus } \\ \text { Number } \end{array}$ | R | X | Units | Run For Cycles/ Set Scale (MW, Max, Min) | Action | Element | $\begin{array}{r} \text { From } \\ \text { Bus } \end{array}$ | To Bus | Tertiary Bus | Circuit ID | Clear Fault |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P4_2 | SCMU L- <br> G | S3456 3 | 345.00 | 645456 |  |  |  | 5 | Open | Transmission Circuit | 645456 | 645455 |  | 1 | Yes |
|  | SCMU L- <br> G | S3456 3 | 345.00 | 645456 |  |  |  | 9 | Open | Transmission Circuit | 645456 | 635000 |  | 1 | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 645456 | 645455 |  | 1 |  |
|  | 3PH | S3456 3 | 345.00 | 645456 |  |  |  | 5 | Open | Transmission Circuit | 645456 | 635000 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | 3PH | S3456 3 | 345.00 | 645456 |  |  |  | 4.5 |  |  |  |  |  |  | Yes |
| P1_3 | 3PH | S1206 5 | 161.00 | 646206 |  |  |  | 7.5 | Open | Three Winding | 645456 | 646206 | 648256 | 1 | Yes |
| P4_2 | SCMU L- <br> G | S1206 5 | 161.00 | 646206 |  |  |  | 9 | Open | Transmission Circuit | 646206 | 646216 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646216 |  |  | 00 |  |
|  | SCMU L- <br> G | S1206 5 | 161.00 | 646206 |  |  |  | 10 | Open | Three Winding | 645456 | 646206 | 648256 | 1 | Yes |
| P4_3 | SCMU L- <br> G | S1206 5 | 161.00 | 646206 |  |  |  | 7.5 | Open | Three Winding | 645456 | 646206 | 648256 | 1 | Yes |
|  | SCMU L- <br> G | S1206 5 | 161.00 | 646206 |  |  |  | 12 | Open | Transmission Circuit | 646206 | 646216 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646216 |  |  | 00 |  |
| P6_1_2 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646206 | 646216 |  | 1 |  |
|  | 3PH | S1206 5 | 161.00 | 646206 |  |  |  | 7.5 | Open | Three Winding | 645456 | 646206 | 648256 | 1 | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646211 | 646250 |  | 1 |  |
|  | 3PH | S1211 5 | 161.00 | 646211 |  |  |  | 6 | Open | Transmission Circuit | 646211 | 646250 |  | 2 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646211 |  |  | 00 |  |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S1250 5 | 161.00 | 646250 | 1454 | -9334 | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S3459 3 | 345.00 | 645459 |  |  |  | 5 | Open | Transmission Circuit | 645459 | 645456 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645459 | 645456 |  | 1 |  |
|  | 3PH | S3459 3 | 345.00 | 645459 |  |  |  | 4.5 | Open | Transmission Circuit | 645459 | 645456 |  | 1 | Yes |
|  | SLG | S3456 3 | 345.00 | 645456 | 1690 | 19307 | MVA | 3 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S3459 3 | 345.00 | 645459 |  |  |  | 5 | Open | Transmission Circuit | 645459 | 645456 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 645459 | 645456 |  | 1 |  |
| P1_2 | 3PH | S1258 5 | 161.00 | 646258 |  |  |  | 6 | Open | Transmission Circuit | 646258 | 646263 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 |  |  |  |  |  |  |  |
|  | SLG | S1263 5 | 161.00 | 646263 | 261 | -1983 | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S1258 5 | 161.00 | 646258 |  |  |  | 6 | Open | Transmission Circuit | 646258 | 646263 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 200 | Close | Transmission Circuit | 646258 | 646263 |  | 1 |  |
| P6_2_1 |  |  |  |  |  |  |  |  | Prior Outage | Three Winding | 645456 | 646206 | 648256 | 1 |  |
|  | 3PH | S1258 5 | 161.00 | 646258 |  |  |  | 6 | Open | Transmission Circuit | 646258 | 646263 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 |  |  |  |  |  |  |  |
|  | SLG | S1263 5 | 161.00 | 646263 | 261 | -1983 | MVA | 8.5 |  |  |  |  |  |  | Yes |


| Category | Fault Type | Bus Name | Voltage (kV) | Bus <br> Number | R | X | Units | Run For Cycles/ Set Scale (MW, Max, Min) | Action | Element | $\begin{array}{r} \text { From } \\ \text { Bus } \end{array}$ | To Bus | Tertiary Bus | Circuit ID | Clear Fault |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P6_2_1 |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { Prior } \\ \text { Outage } \\ \hline \end{array}$ | Three Winding | 645456 | 646206 | 648256 | 1 |  |
|  | 3PH | S1258 5 | 161.00 | 646258 |  |  |  | 6 | Open | Transmission Circuit | 646258 | 646263 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 200 | Close | Transmission Circuit | 646258 | 646263 |  | 1 |  |
| P1_2 | 3PH | S1298 5 | 161.00 | 646298 |  |  |  | 6 | Open | Transmission Circuit | 646298 | 646251 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 |  |  |  |  |  |  |  |
|  | 3PH | S1298 5 | 161.00 | 646298 |  |  |  | 6 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S1298 5 | 161.00 | 646298 |  |  |  | 6 | Open | Transmission Circuit | 646298 | 646251 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 200 | Close | Transmission Circuit | 646298 | 646251 |  | 1 |  |
| P4_2 | SCMU L- <br> G | S1298 5 | 161.00 | 646298 |  |  |  | 6 | Open | Transmission Circuit | 646298 | 646251 |  | 1 | Yes |
|  | SCMU L- <br> G | S1298 5 | 161.00 | 646298 |  |  |  | 13.5 | Open | Transmission Circuit | 646298 | 646305 |  | 1 | Yes |
| P4_2 | SCMU L- <br> G | S1298 5 | 161.00 | 646298 |  |  |  | 9 | Open | Transmission Circuit | 646298 | 646305 |  | 1 | Yes |
|  | SCMU L- <br> G | S1298 5 | 161.00 | 646298 |  |  |  | 10.5 | Open | Transmission Circuit | 646298 | 646251 |  | 1 | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { Prior } \\ \text { Outage } \end{array}$ | Transmission Circuit | 646298 | 646305 |  | 1 |  |
|  | 3PH | S1298 5 | 161.00 | 646298 |  |  |  | 6 | Open | Transmission Circuit | 646298 | 646251 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 |  |  |  |  |  |  |  |
|  | 3PH | S1298 5 | 161.00 | 646298 |  |  |  | 6 |  |  |  |  |  |  | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { Prior } \\ \text { Outage } \\ \hline \end{array}$ | Transmission Circuit | 646298 | 646305 |  | 1 |  |
|  | 3PH | S1298 5 | 161.00 | 646298 |  |  |  | 6 | Open | Transmission Circuit | 646298 | 646251 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 200 | Close | Transmission Circuit | 646298 | 646251 |  | 1 |  |
| P5_5 | SCMU L-G | S1210 5 | 161.00 | 646210 |  |  |  | 25.5 | Open | Transmission Circuit | 646210 | 646222 |  | 1 | Yes |
|  | SCMU L- <br> G | S1210 5 | 161.00 | 646210 |  |  |  | 4.0 | Open | Transmission Circuit | 646210 | 646217 |  | 1 | Yes |
|  | $\begin{array}{r} \hline \text { SCMU L- } \\ \mathrm{G} \\ \hline \end{array}$ | S1210 5 | 161.00 | 646210 |  |  |  | 103.0 | Open | Three Winding | 646210 | 647910 | 648210 | 1 | Yes |
| PO |  | System <br> Intact |  |  |  |  |  |  |  |  |  |  |  |  |  |
| P4_2 | SCMU L- <br> G | S1260 5 | 161.00 | 646260 |  |  |  | 6 | Open | Trip Bus | 646281 |  |  |  | Yes |
|  | SCMU L- <br> G | S1260 5 | 161.00 | 646260 |  |  |  | 10.5 | Open | Transmission Circuit | 646260 | 646361 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646260 |  |  | 00 |  |
| P4_2 | SCMU L- <br> G | S3455 3 | 345.00 | 645455 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645761 |  | 1 | Yes |
|  | SCMU L- <br> G | S3455 3 | 345.00 | 645455 |  |  |  | 9.5 | Open | Three Winding | 645455 | 646255 | 648355 | 1 | Yes |
| P4_2 | $\begin{array}{r} \hline \text { SCMU L- } \\ G \\ \hline \end{array}$ | S1361 5 | 161.00 | 646361 |  |  |  | 6 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes |
|  | SCMU L- <br> G | S1361 5 | 161.00 | 646361 |  |  |  | 9 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S1361 5 | 161.00 | 646361 |  |  |  | 6 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes |


| Category | Fault Type | Bus Name | Voltage (kV) | Number | R | X | Units | Run For Cycles/ Set Scale (MW, Max, Min) | Action | Element | $\begin{array}{r} \text { From } \\ \text { Bus } \end{array}$ | To Bus | Tertiary Bus | Circuit ID | Clear Fault |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 |  | 1 |  |
|  | 3PH | S1361 5 | 161.00 | 646361 |  |  |  | 6 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes |
| P1_2 | 3PH | S1361 5 | 161.00 | 646361 |  |  |  | 6 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 |  | 1 |  |
| Extreme_2_f |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { Prior } \\ \text { Outage } \\ \hline \end{array}$ | Three Winding | 645456 | 646206 | 648256 | 1 |  |
|  | SCMU LG | S3455 3 | 345.00 | 645455 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645761 |  | 1 | Yes |
|  | SCMU LG | S3455 3 | 345.00 | 645455 |  |  |  | 9.5 | Open | Three Winding | 645455 | 646255 | 648355 | 1 | Yes |
| Extreme_2_f | 3PH | S3761 3 | 345.00 | 645761 |  |  |  |  |  |  |  |  |  |  | No |
|  | 3PH | S1361 5 | 161.00 | 646361 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645761 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 1.5 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 |  | 1 |  |
|  | 3PH | S1361 5 | 161.00 | 646361 |  |  |  | 6 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 572.5 |  |  |  |  |  |  |  |
|  | SLG | S3455 3 | 345.00 | 645455 | 2615 | $47487$ | MVA | 4.5 |  |  |  |  |  |  | Yes |
| Extreme_2_f | 3PH | S3761 3 | 345.00 | 645761 |  |  |  |  |  |  |  |  |  |  | No |
|  | 3PH | S1361 5 | 161.00 | 646361 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645761 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 1.5 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 |  | 1 |  |
|  |  |  |  |  |  |  |  | 596.5 | Close | Transmission Circuit | 645455 | 645761 |  | 1 |  |
| Extreme_2_f | 3PH | S3455 3 | 345.00 | 645455 |  |  |  |  |  |  |  |  |  |  | No |
|  | 3PH | S1255 5 | 161.00 | 646255 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645761 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 1.5 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 |  | 1 |  |
|  | 3PH | S1255 5 | 161.00 | 646255 |  |  |  | 6 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 572.5 |  |  |  |  |  |  |  |
|  | 3PH | S3455 3 | 345.00 | 645455 |  |  |  | 4.5 |  |  |  |  |  |  | Yes |
| Extreme_2_f | 3 PH | S3455 3 | 345.00 | 645455 |  |  |  |  |  |  |  |  |  |  | No |
|  | 3PH | S1255 5 | 161.00 | 646255 |  |  |  | 4.5 | Open | Transmission Circuit | 645455 | 645761 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 1.5 | Open | Transmission Circuit | 646255 | 646361 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 20 | Close | Transmission Circuit | 646255 | 646361 |  | 1 |  |
|  |  |  |  |  |  |  |  | 596.5 | Close | Transmission Circuit | 645455 | 645761 |  | 1 |  |
| P1_2 | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646209 | 646347 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S1209 5 | 161.00 | 646209 | 1931 | $13978$ | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646209 | 646347 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646209 | 646347 |  | 1 |  |
| P6_1_1 |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { Prior } \\ \text { Outage } \\ \hline \end{array}$ | Transmission Circuit | 646236 | 646252 |  | 1 |  |
|  | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646209 | 646347 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |


| Category | Fault Type | Bus Name | Voltage (kV) | Bus <br> Number | R | X | Units | Run For Cycles/ Set Scale (MW, Max, Min) | Action | Element | $\begin{array}{r} \text { From } \\ \text { Bus } \end{array}$ | To Bus | Tertiary Bus | Circuit ID | Clear <br> Fault |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SLG | S1209 5 | 161.00 | 646209 | 1931 | $13978$ | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior | Transmission Circuit | 646236 | 646252 |  | 1 |  |
|  | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646209 | 646347 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646209 | 646347 |  | 1 |  |
| P1_2 | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646252 | 646347 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646252 |  |  | 00 |  |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S1252 5 | 161.00 | 646252 | 1931 | $13978$ | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646252 | 646347 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646252 |  |  | 00 |  |
|  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646252 | 646347 |  | 1 |  |
| P6_2_1 |  |  |  |  |  |  |  |  | $\begin{gathered} \hline \text { Prior } \\ \text { Outage } \\ \hline \end{gathered}$ | Three Winding | 645459 | 646209 | 648359 | 1 |  |
|  | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646252 | 646347 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646252 |  |  | 00 |  |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S1252 5 | 161.00 | 646252 | 1931 |  | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P6_2_1 |  |  |  |  |  |  |  |  | Prior | Three Winding | 645459 | 646209 | 648359 | 1 |  |
|  | 3PH | S1347 5 | 161.00 | 646347 |  |  |  | 6 | Open | Transmission Circuit | 646252 | 646347 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 0 | Open | Load | 646252 |  |  | 00 |  |
|  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646252 | 646347 |  | 1 |  |
| P1_2 | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646362 | 646363 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S1362 5 | 161.00 | 646362 | 1133 | -9911 | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P1_2 | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646362 | 646363 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646362 | 646363 |  | 1 |  |
| P6_1_1 |  |  |  |  |  |  |  |  | $\begin{gathered} \text { Prior } \\ \text { Outage } \end{gathered}$ | Transmission Circuit | 646362 | 646363 |  | 2 |  |
|  | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646362 | 646363 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S1362 5 | 161.00 | 646362 | 1133 | -9911 | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646362 | 646363 |  | 2 |  |
|  | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646362 | 646363 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646362 | 646363 |  | 1 |  |
| P1_2 | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646281 | 646363 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S1281 5 | 161.00 | 646281 | 972 | -8495 | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P1_2 | 3 PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646281 | 646363 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646281 | 646363 |  | 1 |  |


| Category | Fault Type | Bus Name | Voltage (kV) | $\begin{array}{r} \text { Bus } \\ \text { Number } \end{array}$ | R | X | Units | Run For Cycles/ Set Scale (MW, Max, Min) | Action | Element | From Bus | To Bus | Tertiary Bus | Circuit ID | Clear Fault |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior | Transmission Circuit | 646362 | 646363 |  | 2 |  |
|  | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646281 | 646363 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 600 |  |  |  |  |  |  |  |
|  | SLG | S1281 5 | 161.00 | 646281 | 972 | -8495 | MVA | 8.5 |  |  |  |  |  |  | Yes |
| P6_1_1 |  |  |  |  |  |  |  |  | Prior Outage | Transmission Circuit | 646362 | 646363 |  | 2 |  |
|  | 3PH | S1363 5 | 161.00 | 646363 |  |  |  | 6 | Open | Transmission Circuit | 646281 | 646363 |  | 1 | Yes |
|  |  |  |  |  |  |  |  | 620 | Close | Transmission Circuit | 646281 | 646363 |  | 1 |  |

